Fast and facile pH tailored green synthesized ZnO photocatalyst by biogenic reduction using water extract of Averrhoa bilimbi (L) fruit

Author:

Ramanarayanan Rajita1ORCID,Swaminathan Sindhu2,Meethal Bhabhina Ninnora3ORCID

Affiliation:

1. Department of Physics , Government Victoria College , Palakkad , 678001 , Kerala , India

2. Department of Nanoscience and Technology , University of Calicut , Kozhikode , 673635 , Kerala , India

3. R. Sankar Memorial S.N.D.P. Yogam Arts & Science College , Kozhikode , 673305 , Kerala , India

Abstract

Abstract The present study reports an economical and environmentally friendly technique for the synthesis of zinc oxide nanoparticles. The water extract of Averrhoa bilimbi (L) fruit was used in this one-pot synthesis approach for ZnO nanoparticle reduction and stabilisation. Varied size, shape and properties of the synthesized nanomaterials were obtained by tuning the pH of the synthesis medium. X-ray diffraction techniques, diffuse reflectance spectroscopy, photoluminescence and scanning electron microscopy analysis were used for characterizing phytochemical capped ZnO nanoparticles. The morphological change with varying pH was observed from scanning electron microscopy images. Short duration of synthesis with high yield product at ambient room temperature are the salient features of this procedure. The synthesised ZnO nanoparticles showed excellent photocatalytic activity and superhydrophilicity to be used in a wide range of applications.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3