Optimization of hot rolling parameters of CRNO steel with the aid of hot compression test and deformation map

Author:

Thakur Suman Kant12ORCID,Das Alok Kumar2,Rath Sushant1,Pathak Purnanand1,Jha Bimal Kumar3

Affiliation:

1. R&D Centre for Iron & Steel , Steel Authority of India Ltd. , Ranchi , India

2. IIT (ISM) , Dhanbad , India

3. NIFFT , Ranchi , India

Abstract

Abstract Cold-rolled non-oriented (CRNO) electrical steels find a wide variety of applications in the core of electrical machines due to low core loss and high magnetic permeability. Stringent market conditions not only require CRNO steel with superior magnetic properties but also demand excellent surface conditions. CRNO steel is cold rolled to 0.5 mm in reversing mill. High hot rolled input thickness (>2.6 mm) increases the number of passes during cold rolling and adversely affects the mill productivity. It also results in surface defects such as buckling and coil break. The flow stress of this steel varies differently compared to conventional rolled steel. Thus, it becomes difficult to optimize the reduction schedule and hence safe hot rolling practice is adopted to restrict roll force within permissible limit resulting in higher thickness. A hot compression test was carried out in a Gleeble–3500 to evaluate the flow stress behaviour of this steel and a deformation map was developed to optimize the hot rolling window. The input from the hot compression test and deformation map was used to develop a mill setup model to accurately predict the roll force and optimize the reduction schedule of CRNO steel in the finishing stands of HSM. The final thickness of hot-rolled coils during industrial trials with an optimized reduction schedule was found to be in the range of 2.4–2.6 mm compared to 2.7–3.0 mm during conventional rolling. These coils were further cold rolled and finished in 4–5 passes compared to 6–7 passes with conventional rolling. Reduction in the number of passes has resulted in increased productivity during cold rolling as well as improved surface finish.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3