Effect of Bacillus and Pseudomonas biofilms on the corrosion behavior of AISI 304 stainless steel

Author:

Wadood Hafiz Zeshan12,Rajasekar Aruliah23,Farooq Ameeq4,Deen Kashif Mairaj5ORCID

Affiliation:

1. Department of Biology , Lahore Garrison Univesity , Lahore , Pakistan

2. Department of Chemical and Biomolecular Engineering , National University of Singapore , 117576 , Singapore , Singapore

3. Department of Biotechnology , Thiruvalluvar University , Serkkadu , Vellore , 632115 , India

4. Corrosion Control Research Cell, Faculty of Chemical and Materials Engineering , Institute of Metallurgy and Materials Engineering, University of the Punjab , Lahore , 54590 , Pakistan

5. Department of Materials Engineering , The University of British Columbia , Vancouver , V6T 1Z4 , BC , Canada

Abstract

Abstract In this research work, the corrosion tendency of stainless steel 304 caused by the Pseudomonas aeruginosa ZK and Bacillus subtilis S1X bacterial strains is investigated. The topographical features of the biofilms achieved after 14 days of incubation at 37 °C were examined by means of scanning electron microscopy. Fourier transform infrared spectroscopic analysis of the extracellular polymeric substance was carried out to estimate the chemical composition of the biofilm. Electrochemical impedance spectroscopy and Tafel polarization test methods were applied to understand the in-situ corrosion tendency of the stainless steel 304 in the presence of P. aeruginosa ZK and B. subtilis S1X strains. Compared to the biofilm produced by the P. aeruginosa ZK, the extracellular polymeric substance in the B. subtilis S1X containing bacteria was found to be porous and non-uniform. The improved hydrophobicity and uniformity of the P. aeruginosa ZK containing biofilm retarded the corrosion of the underlying stainless steel 304 sample. Appreciably large resistance of the P. aeruginosa ZK biofilm (∼6.04 kΩ-cm2) and hindered charge transport (11.12 kΩ-cm2) were evident from the electrochemical impedance spectroscopy analysis. In support of these results, a large cathodic Tafel slope (0.2 V/decade) and low corrosion rate (1.69 μA cm−2) were corroborated by the inhibitive properties of the P. aeruginosa ZK containing biofilm. However, the localized corrosion of the substrate in the presence of B. subtilis S1X bacteria was caused by the porosity and non-homogeneity of the extracellular polymeric substance layer. The small charge transfer resistance, high dissolution rate and pitting of the surface under B. subtilis S1X biofilm were comparable to the corrosion properties of stainless steel 304 in a controlled medium. These results highlighted the poor corrosion inhibitive properties of the B. subtilis S1X biofilm compared to the P. aeruginosa ZK bacterial strain.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3