Influence of thermo-mechanical treatment in austenitic and ferritic field condition on microstructural and mechanical properties of reduced activation ferritic-martensitic steel

Author:

Putta Prakash1ORCID,G V S Nageswara Rao2

Affiliation:

1. Department of Mechanical Engineering , Mohan Babu University , Tirupati , Andhra Pradesh , India

2. Department of Metallurgical and Materials Engineering , National Institute of Technology Warangal , Warangal 506021 , Telangana State , India

Abstract

Abstract 9Cr-1W-0.06Ta reduced activation ferritic-martensitic (RAFM) steel has been investigated in normalized and tempered (N + T) condition and in thermo-mechanically treated (TMT) in austenitic and ferritic field conditions. RAFM steel in N + T condition has a tempered martensitic structure (body-centred tetragonal, bct). It is unstable and will transfer into a stable body-centered cubic (bcc) in the structure during a long period subjected to high temperatures. To make it stable structure, the steel was subjected to austenitization at 1423 K for 10 min, and then cooled in still air (≈−1 K s−1) to 973 K and this temperature was maintained for 2 h in furnace to fully convert austenite into ferritic phase then the steel was subjected to 25% reduction in thickness by hot rolling. Optical, scanning and transmission electron microscopic investigations have been carried out to assess the microstructural changes of the steel N + T and TMT conditions. Hardness, tensile and creep studies are carried out and the results were correlated with the microstructural studies. TMT processed steel resulted in coarser prior austenite grains and exhibited ferrite in phase with fine distribution of M 23C6 and MX precipitates whereas N + T condition is subjected to tempered martensitic structure with coarser M 23C6 and MX precipitates. Even though ferrite phase present in TMT processed steel it exhibits higher tensile and creep strengths due to the presence of high dislocations and finer distribution of precipitates than the N + T condition.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3