Synthesis, structural and magnetic characterization of spherical high entropy alloy CoCuFeNi particles by hydrogen reduction assisted ultrasonic spray pyrolysis

Author:

Küçükelyas Burak12,Safaltın Şerzat1,Sam Ebru Devrim2,Gurmen Sebahattin1ORCID

Affiliation:

1. Department of Metallurgical and Materials Engineering , Istanbul Technical University , Istanbul , Turkey

2. Department of Metallurgical and Materials Engineering , Bursa Technical University , Bursa , Turkey

Abstract

Abstract The present study focuses on the synthesis, structural and magnetic characterization of CoCuFeNi high entropy alloy particles. The hydrogen reduction assisted ultrasonic spray pyrolysis method was used to synthesize nanocrystalline quaternary CoCuFeNi particles in a single step. The effect of synthesis temperature on the structure, morphology and the size of particles was investigated. The syntheses were performed at 700 °C, 800 °C, and 900 °C with 0.1 M concentration of metal nitrate salts precursor solution. The structure and morphology of products were characterized through X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and vibrating sample magnetometer studies. Diffraction pattern based calculations revealed that crystallite sizes of CoCuFeNi particles were in the range of 15.6–26.7 nm. Scanning electron microscopy and energy dispersive spectroscopy investigations showed that particles were agglomerated from crystallites and in spherical morphology with equiatomic elemental composition. According to vibrating sample magnetometry results, soft magnetic properties were observed for CoCuFeNi particles. X-ray photoelectron spectroscopy results showed that the surface has a thin layer of copper oxide.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3