Improvement of the thermoelectric properties of GeTe- and SnTe-based semiconductors aided by the engineering based on phase diagram

Author:

Li Junqin1ORCID,Liu Fusheng1,Ao Weiqin1,Hu Lipeng1,Zhang Chaohua1

Affiliation:

1. College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials , Shenzhen 518060 , P. R. China

Abstract

Abstract Group IV–VI semiconductors, such as PbTe, GeTe and SnTe, are promising thermoelectric materials at intermediate temperatures, which have potential application in electrical generation from waste heat. A phase diagram plays an important role for designing a high-performance material. In this mini review, we present the enhancement of the thermoelectric properties of GeTe- and SnTe-based semiconductors based on their phase diagrams. The figure of merit ZT for the p-type GeTe–Ag8GeTe6 composites was enhanced by reducing the thermal conductivity significantly using the eutectic microstructures formed by the Ag8GeTe6 second phase and the GeTe matrix based on the GeTe–Ag8GeTe6 pseudo-binary system. The partial substitution of Te by Se in p-type GeTe extends the solid solubility of Pb in GeTe0.5Se0.5 up to 30 mol.%, which further improves the thermoelectric properties of alloys in the GeTe–PbTe–Se system by modifying the carrier concentration, leading to increasing the Seebeck coefficient and reducing thermal conductivity over a wide composition range. The Sn1−y Mn y Te alloy with 10 at.% excess Mn keeps its composition change along the SnTe–MnTe tie line and receives higher solid solubility of MnTe in SnTe. It shows much higher thermoelectric performance since the excess Mn compensates the Mn lost during the preparation as compared to the Sn1−x Mn x Te alloy without excess Mn.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3