Intrinsic heterogeneity of grain boundary phase transitions in the Cu–Bi system: insights from grain boundary diffusion measurements

Author:

Edelhoff Henning1,Esin Vladimir A.23,Divinski Sergiy V.1ORCID

Affiliation:

1. Institute of Materials Physics , University of Münster , Wilhelm-Klemm-Str. 10, 48149 Münster , Germany

2. Mines Paris, PSL University, Centre for Material Sciences (MAT) , UMR 7633 CNRS, 91003 Évry , France

3. Université de Lorraine, CNRS, Institut Jean Lamour , F-54000 Nancy , France

Abstract

Abstract Diffusion of Bi and Ag in a series of polycrystalline Cu–Bi alloys is investigated using a radiotracer technique and applying the 207Bi and 110m Ag isotopes, respectively. Together with the previous measurements (Divinski S., Lohmann M., Herzig C., Straumal B., Baretzky B., Gust W. Grain-boundary Melting Phase Transition in the Cu−Bi System. Phys. Rev. B 2005, 71, 104104), a temperature–concentration interval of strong, by orders of magnitude, enhancements of Bi grain boundary diffusion rates is distinguished and the results are interpreted in terms of a grain boundary pre-wetting/wetting phase transition. Grain boundary diffusivity of Ag exhibits as well a step-wise increase with rising Bi content, mirroring the behaviour observed for the Bi tracer. However, contrary to the Bi tracer atoms for which grain boundary enhancement is observed at about 60 ppm of Bi in Cu–Bi alloys, this transition is revealed by the Ag tracer atoms at a significantly higher concentration, specifically between 90 and 100 ppm of Bi at 1080 K. The Ag diffusion rates in alloys with a moderate Bi content turn out to be not affected by the Bi-induced grain boundary phase transition and the measured grain boundary diffusion coefficients of Ag are nearly the same as those determined for pure polycrystalline Cu. This spectacular result suggests a strong heterogeneity of Bi segregation and Bi-induced phase transition for general high-angle grain boundaries in a given alloy. The behaviour is discussed in terms of the extrinsic grain boundary defects and their impact on mechano-chemical coupling which is accompanying the grain boundary phase transitions.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3