Optimization of magnetic properties of MnFe2O4 by modulating molarity of NaOH as precipitating agent

Author:

Gulati Sudha1ORCID,Gokhale Shubha2,Luthra Vandna3

Affiliation:

1. Department of Physics , 599520 Kalindi College , East Patel Nagar , New Delhi , 110008 , India

2. School of Sciences , Indira Gandhi National Open University , Maidan Garhi , New Delhi , 110068 , India

3. Department of Physics , Gargi College , Siri Fort Road , New Delhi , 110049 , India

Abstract

Abstract MnFe2O4 nanoparticles were synthesized using the co-precipitation method with a wide range of molar concentrations of sodium hydroxide 0.76 M−3.0 M. X-ray diffraction, field effect scanning electron microscopy, transmission electron microscopy, and vibrating sample magne-tometry were employed to characterise the structural, morphological, and magnetic characteristics of nanoparticles. Field effect scanning electron microscopy and transmission electron microscopy images show that the particles were spherical in shape for all the samples except for sample prepared at a molar concentration of 1.3 M. Particle shape was found to depend on the molar concentration of NaOH. The hysteresis loops of the samples possessed a very small area and low coercivity. The crystallite size (cs), saturation magnetisation, coercivity, retentivity, squareness ratio and anisotropy constant were found to be dependent on the molar concentration on NaOH. M S was noted to be at a maximum of 64.4 emu g−1 at a molar concentration of 1.3 M. The ratio t/cs (where t is the thickness of the dead layer) was calculated to account for the variation in M S. H C was found to be maximum of ∼52 Oe at molar concentrations between 1.0 M and 2.0 M. M r and M r/M S were found to be a maximum of 8.95 emu g−1 and 0.15, respectively, for the molar concentration of 2.0 M.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3