Gray-box identification with regularized FIR models

Author:

Münker Tobias1,Peter Timm J.1,Nelles Oliver1

Affiliation:

1. Universität Siegen , Department Maschinenbau , Institut für Mechanik und Regelungstechnik – Mechatronik , Paul-Bonatz-Str. 9-11 , 57068 , Siegen , Germany

Abstract

Abstract The problem of modeling a linear dynamic system is discussed and a novel approach to automatically combine black-box and white-box models is introduced. The solution proposed in this contribution is based on the usage of regularized finite-impulse-response (FIR) models. In contrast to classical gray-box modelling, which often only optimizes the parameters of a given model structure, our approach is able to handle the problem of undermodeling as well. Therefore, the amount of trust in the white-box or gray-box model is optimized based on a generalized cross-validation criterion. The feasibility of the approach is demonstrated with a pendulum example. It is furthermore investigated, which level of prior knowledge is best suited for the identification of the process.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3