Data selection for system identification (DS4SID) from logged process records of continuously operated plants

Author:

Arengas David1,Kroll Andreas1

Affiliation:

1. Department of Measurement and Control, Faculty of Mechanical Engineering , University of Kassel , Mönchebergstrasse 7 , Kassel , Germany

Abstract

Abstract Use of historical logged data can be considered for system identification if performing dedicated experiments is not possible. Continuously operated plants are examples of processes where experiments for system identification are typically restricted due to a possibly negative impact on production. However, process variables are logged for long periods of time which results in large databases that are a valuable source of information for model estimation. Automatic selection of informative data intervals can support system identification when use of logged process data is addressed. A new method is presented that differs in several aspects from current approaches. Firstly, interval bounding is performed using the gradient of a norm associated to the resulting information matrix which decreases interval misdetection. Secondly, process data do not need to be normalized for change detection. Thirdly, an instrumental variables identification method is used which offers robustness to autocorrelated noise. Lastly, the proposed selection technique can be applied to multivariate processes. The performance of the proposed method is demonstrated in a case study implemented in a lab-scale chemical plant.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Informative Data Selection for Historical Data Driven Process Identification;2022 19th International Multi-Conference on Systems, Signals & Devices (SSD);2022-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3