The PRORETA 4 City Assistant System

Author:

Schwehr Julian1,Luthardt Stefan1,Dang Hien2,Henzel Maren3,Winner Hermann3,Adamy Jürgen1,Fürnkranz Johannes2,Willert Volker1,Lattke Benedikt4,Höpfl Maximilian5,Wannemacher Christoph5

Affiliation:

1. Control Methods and Robotics , Technische Universität Darmstadt , Darmstadt , Germany

2. Knowledge Engineering , Technische Universität Darmstadt , Darmstadt , Germany

3. Automotive Engineering , Technische Universität Darmstadt , Darmstadt , Germany

4. Continental , Frankfurt/M. , Germany

5. Continental , Babenhausen , Germany

Abstract

Abstract The use of machine learning in driver assistance systems allows to significantly enhance their functionalities. In particular, it allows to personalize systems by evaluating the driver’s past behavior. Such personalization is especially relevant for recommendations in maneuvers where the specific maneuver embodiment strongly depends on the driver’s momentary driving style and attention. Led by this idea, PRORETA 4 developed a prototypical City Assistant System, which gives the driver a personalized recommendation in urban scenarios. To adapt the recommendations and warnings appropriately, the system incorporates the learned momentary driving style and the driver’s gaze behavior. In this work, we describe the main functional blocks of the system, present our solutions to major implementation challenges and also discuss the safety of the used learning algorithm.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Reference30 articles.

1. Statistisches Bundesamt, “Verkehr: Verkehrsunfälle 2017, ” ser. Fachserie 8 Reihe 7, 2018.

2. Ford-Werke GmbH. (2019) Active City Stop. Accessed Mar. 4, 2019. [Online]. Available: https://www.ford.de/kaufberatung/informieren/technologien/sicherheit/active-city-stop.

3. Audi AG. (2019) Fahrerassistenzsysteme. Accessed Mar. 4, 2019. [Online]. Available: https://www.audi-mediacenter.com/de/technik-lexikon-7180/fahrerassistenzsysteme-7184.

4. BMW Deutschland. (2016) Der neue BMW 5er. Driving Assistant Plus. Video. Accessed Mar. 4, 2019. [Online]. Available: https://www.youtube.com/watch?v=PeilcXoPGXM.

5. H. Dang, J. Fürnkranz, M. Höpfl and A. Biedermann, “Time-to-lane-change prediction with deep learning,” in IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3