Extremum seeking dead-zone pre-compensator for an industrial control system

Author:

Dincmen Erkin1

Affiliation:

1. Işık University, Mechanical Engineering Department, Sile, 34980 Istanbul Turkey

Abstract

Abstract PID type industrial controllers such as PI, PD, PID are mature control algorithms and they are intensively used in industry due to their simplicity and easily implementability. However, they start to fail when there is an unknown or unpredictable nonlinear behavior in the plant or actuator. In this paper, a novel compensation algorithm is proposed for PD type industrial control systems, which possess an unknown dead-zone nonlinearity. An extremum-seeking technique is utilized in the compensation algorithm. The aim is to propose a new, effective and robust compensator which can be added easily to an existing industrial controller without any need to change/retune the controller settings/parameters. It is shown that by adding the compensator to an existing PD control system, the sensitivity of the controller to the dead-zone nonlinearity is removed.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Cooperative Neural Network Control Structure and Its Application for Systems Having Dead-Zone Nonlinearities;Iranian Journal of Science and Technology, Transactions of Electrical Engineering;2022-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3