Optimal Reduction of Multivariate Dirac Mixture Densities

Author:

Hanebeck Uwe D.1

Affiliation:

1. Intelligent Sensor-Actuator-Systems Laboratory (ISAS), Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology (KIT), Karlsruhe

Abstract

Abstract This paper is concerned with the optimal approximation of a given multivariate Dirac mixture, i.e., a density comprising weighted Dirac distributions on a continuous domain, by a Dirac mixture with a reduced number of components. The parameters of the approximating density are calculated by numerically minimizing a smooth distance measure, a generalization of the well-known Cramér–von Mises-Distance to the multivariate case. This generalization is achieved by defining an alternative to the classical cumulative distribution, the Localized Cumulative Distribution (LCD), as a smooth characterization of discrete random quantities (on continuous domains). The resulting approximation method provides the basis for various efficient nonlinear estimation and control methods.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progressive Particle Filtering Using Projected Cumulative Distributions;2023 IEEE Symposium Sensor Data Fusion and International Conference on Multisensor Fusion and Integration (SDF-MFI);2023-11-27

2. Progressive Bayesian Particle Flows Based on Optimal Transport Map Sequences;2023 26th International Conference on Information Fusion (FUSION);2023-06-28

3. Dual Quaternion Sample Reduction for SE(2) Estimation;2020 IEEE 23rd International Conference on Information Fusion (FUSION);2020-07

4. Optimal Reduction of Dirac Mixture Densities on the 2-Sphere;IFAC-PapersOnLine;2020

5. Hyperspherical Deterministic Sampling Based on Riemannian Geometry for Improved Nonlinear Bingham Filtering;2019 22th International Conference on Information Fusion (FUSION);2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3