Affiliation:
1. Faculty of Computer Science , Otto-von-Guericke University Magdeburg , Magdeburg , Germany
Abstract
Abstract
This article describes the Distance Minimisation Problem (DMP) from a metaheuristic optimisation point of view. The problem is motivated by real applications and can be used to test the performance of optimisation methods like Evolutionary Algorithms. After formally describing the problem and its extensions using different metrics or dynamics, we perform experiments with well-known metaheuristic methods to demonstrate the performance on various DMP instances. The results show that modern algorithms like NSGA-II and SMPSO can struggle with this kind of problem under certain conditions, especially when Manhattan distances are used. On the other hand, specialised methods like GRA lack diversity of solutions in some cases. This indicates that even modern and powerful metaheuristic algorithms need to be chosen with care and with the respective optimisation task in mind.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献