Fast and simple dataset selection for machine learning

Author:

Peter Timm J.1,Nelles Oliver1

Affiliation:

1. Universität Siegen , Department Maschinenbau , Institut für Mechanik und Regelungstechnik – Mechatronik , Paul-Bonatz-Str. 9-11 , Siegen , Germany

Abstract

Abstract The task of data reduction is discussed and a novel selection approach which allows to control the optimal point distribution of the selected data subset is proposed. The proposed approach utilizes the estimation of probability density functions (pdfs). Due to its structure, the new method is capable of selecting a subset either by approximating the pdf of the original dataset or by approximating an arbitrary, desired target pdf. The new strategy evaluates the estimated pdfs solely on the selected data points, resulting in a simple and efficient algorithm with low computational and memory demand. The performance of the new approach is investigated for two different scenarios. For representative subset selection of a dataset, the new approach is compared to a recently proposed, more complex method and shows comparable results. For the demonstration of the capability of matching a target pdf, a uniform distribution is chosen as an example. Here the new method is compared to strategies for space-filling design of experiments and shows convincing results.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Latin hypercubes for constrained design of experiments for data-driven models;at - Automatisierungstechnik;2023-10-01

2. Space-filling Optimization of Excitation Signals for Nonlinear System Identification;Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics;2022

3. Comparison of data selection methods for modeling chemical processes with artificial neural networks;Applied Soft Computing;2021-12

4. Genetic Optimization of Excitation Signals for Nonlinear Dynamic System Identification;Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3