Automated sorting of recycled paper using smart image processing

Author:

Rahman Mohammad Osiur1,Hussain Aini2,Basri Hassan3

Affiliation:

1. Department of Computer Science and Engineering , 54493 University of Chittagong , Chattogram , Bangladesh

2. Department of Electrical, Electronic and Systems Engineering , Universiti Kebangsaan Malaysia, Faculty of Engineering and Built Environment , Bangi , Selangor DE , , Malaysia

3. Department of Civil and Structural Engineering , Universiti Kebangsaan Malaysia, Faculty of Engineering and Built Environment , Bangi , Selangor DE , , Malaysia

Abstract

Abstract Because of the cost and complexity of implementing an optical paper sorting system, the demand for an intelligent system for waste paper sorting has increased. This research focused on the development of a smart intelligent system (SIS) for recyclable waste paper sorting. The basis for selecting the regions of interests (ROIs) is the margin area of a paper object image because almost all printed documents keep the margin area intact. The paper grade is identified using a proximity search. The SIS with the HSI colour space offered maximum success rates of 99 %, 82 % and 89 %, while with the RGB model, the classification success rates were 94 %, 93 % and 98 % for white paper, old newsprint paper and old corrugated cardboard, respectively. The SIS is clearly superior to other prevailing techniques because of the faster decision making and lower cost of implementation.

Funder

Universiti Kebangsaan Malaysia

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Reference35 articles.

1. Ballard, D. A.; Brown, C. M., (1982). Computer vision. Englewood Cliffs, NJ, USA: Prentice-Hall.

2. Bialski, A.; Gentile, C.; Sepall, O., (1980). Paper sorting apparatus, US Patent No. 4, 236, 676.

3. Brosnan, T.; Sun, D. W., (2004). Improving quality inspection of food products by computer vision – a review. Journal of Food Engineering 61, 3–16.

4. Bruner, R. S.; Morgan, D. R.; Kenny, G. R.; Gaddis, P. G.; Lee, D.; Roggow, J. M., (2003). System and Method for Sensing White Paper. US Patent No. 6,570,653.

5. Burke, M. W., (1996). Image Acquisition, Handbook of Machine Vision Engineering Volume 1. Chapman and Hall, London.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3