Uncertainty quantification of nonlinear distributed parameter systems using generalized polynomial chaos

Author:

Janya-anurak Chettapong1,Bernard Thomas23,Beyerer Jürgen234

Affiliation:

1. King Mongkut’s University of Technology Thonburi (KMUTT) , Bangkok , Thailand

2. Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB , Karlsruhe , Germany

3. Fraunhofer Center for Machine Learning , Sankt Augustin , Germany

4. Vision and Fusion Laboratory (IES) , Karlsruhe Institute of Technology , Karlsruhe , Germany

Abstract

Abstract Many industrial and environmental processes are characterized as complex spatio-temporal systems. Such systems known as distributed parameter systems (DPSs) are usually highly complex and it is difficult to establish the relation between model inputs, model outputs and model parameters. Moreover, the solutions of physics-based models commonly differ somehow from the measurements. In this work, appropriate Uncertainty Quantification (UQ) approaches are selected and combined systematically to analyze and identify systems. However, there are two main challenges when applying the UQ approaches to nonlinear distributed parameter systems. These are: (1) how uncertainties are modeled and (2) the computational effort, as the conventional methods require numerous evaluations of the model to compute the probability density function of the response. This paper presents a framework to solve these two issues. Within the Bayesian framework, incomplete knowledge about the system is considered as uncertainty of the system. The uncertainties are represented by random variables, whose probability density function can be achieved by converting the knowledge of the parameters using the Principle of Maximum Entropy. The generalized Polynomial Chaos (gPC) expansion is employed to reduce the computational effort. The framework using gPC based on Bayesian UQ proposed in this work is capable of analyzing systems systematically and reducing the disagreement between model predictions and measurements of the real processes to fulfill user defined performance criteria. The efficiency of the framework is assessed by applying it to a benchmark model (neutron diffusion equation) and to a model of a complex rheological forming process. These applications illustrate that the framework is capable of systematically analyzing the system and optimally calibrating the model parameters.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3