The Lerch zeta function I. Zeta integrals

Author:

Lagarias Jeffrey C.1,Winnie Li Wen-Ching2

Affiliation:

1. Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA

2. Department of Mathematics, Pennsylvania State University, University Park, PA 16802-8401, USA

Abstract

Abstract. This is the first of four papers that study algebraic and analytic structures associated to the Lerch zeta function. This paper studies “zeta integrals” associated to the Lerch zeta function using test functions, and obtains functional equations for them. Special cases include a pair of symmetrized four-term functional equations for combinations of Lerch zeta functions, found by A. Weil, for real parameters ( a , c ) $(a,c)$ with 0 < a , c < 1 $0&lt; a, c&lt; 1$ . It extends these functions to real a $a$ and c $c$ , and studies limiting cases of these functions where at least one of a $a$ and c $c$ take the values 0 or 1. A main feature is that as a function of three variables ( s , a , c ) $(s, a, c)$ , in which a $a$ and c $c$ are real, the Lerch zeta function has discontinuities at integer values of a $a$ and c $c$ . For fixed s $s$ , the function ( s , a , c ) $\zeta (s,a,c)$ is discontinuous on part of the boundary of the closed unit square in the ( a , c ) $(a,c)$ -variables, and the location and nature of these discontinuities depend on the real part ( s ) $\Re (s)$ of s $s$ . Analysis of this behavior is used to determine membership of these functions in L p ( [ 0 , 1 ] 2 , d a d c ) $L^p([0,1]^2, da\,dc)$ for 1 p < $1 \le p &lt; \infty $ , as a function of ( s ) $\Re (s)$ . The paper also defines generalized Lerch zeta functions associated to the oscillator representation, and gives analogous four-term functional equations for them.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3