Modelling with Dispersed Bivariate Moving Average Processes

Author:

Sunecher Yuvraj,Mamode Khan Naushad,Jowaheer Vandna

Abstract

Abstract This paper proposes a non-stationary bivariate integer-valued moving average of order 1 (BINMA(1)) model where the respective innovations are marginal COM-Poisson and unrelated. As opposed to other such bivariate time series model, the dependence between the series in the above is constructed via the relation between the current series with survivor elements of the other series at the preceding time point. Under these assumptions, the BINMA(1) process is shown to accommodate different levels and combinations of over-, equi- and under-dispersion. Since under the non-stationary conditions, the joint likelihood function is hardly laborious to construct, a generalized quasi-likelihood (GQL) method of estimation is proposed to estimate the dynamic effects and dependence parameters. The asymptotic and consistency properties of the GQL estimators are also established. Monte-Carlo experiments and a real-life application to analyze intra-day stock transactions are presented to validate the proposed model and the estimation methodology.

Publisher

Walter de Gruyter GmbH

Subject

Economics and Econometrics

Reference80 articles.

1. Application of Conway–Maxwell Poisson for Analyzing Motor Vehicle Crashes;Accident Analysis and Prevention,2008

2. A Bivariate INAR(1) Process with Application;Statistical Modelling: An International Journal,2011

3. Modelling a Non-stationary BINAR(1) Poisson Process;Journal of Statistical Computation and Simulation,2016a

4. Improved GQL Estimation Method for the BINMA(1) Model;Communication and Statistics – Theory and Methods,2018

5. Extension of the Application of Conway–Maxwell Poisson Models: Analysing traffic crash data exhibiting underdispersion;Risk Analysis,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3