Changes in protein patterns of Staphylococcus aureus and Escherichia coli by silver nanoparticles capped with poly (4-styrenesulfonic acid-co-maleic acid) polymer

Author:

Tamiyakul Hathaichanok1,Roytrakul Sittiruk2,Jaresitthikunchai Janthima2,Phaonakrop Narumon2,Tanasupawat Somboon3,Warisnoicharoen Warangkana4

Affiliation:

1. Graduate School of Nanoscience and Technology, Chulalongkorn University , Bangkok 10330 , Thailand

2. Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), The National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand

3. Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok 10330 , Thailand

4. Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok 10330 , Thailand

Abstract

Abstract Background While silver nanoparticles (AgNPs) are increasingly attractive as an antibacterial agent in many applications, the effect of AgNPs on bacterial protein profiles, especially AgNPs stabilized by polymeric molecules, is not well understood. Objectives To investigate the changes in bacterial protein patterns by AgNPs capped with poly (4-styrenesulfonic acid-co-maleic acid) (AgNPs-PSSMA) polymer toward Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. Methods The growth of bacteria after incubated with AgNPs-PSSMA for different time intervals was determined by optical density at 600 nm. Their protein patterns were observed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the proteomic analysis of extracted proteins was determined by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Results AgNPs-PSSMA was able to inhibit the growth of both S. aureus and E. coli cells. The treated bacterial cells expressed more proteins than the untreated cells as seen from SDS-PAGE study. Nanosilver (NS) caused the upregulation of metabolic gene, waaA, in S. aureus cells. For E. coli cells, the upregulated proteins were metabolic genes (srlB, fliE, murD) and other genes dealt with DNA replication (dinG), DNA–RNA transcription (yrdD), RNA– protein translation (rplD), molecular transport (sapF), and signal transduction (tdcF). Conclusions The antibacterial effect of AgNPs-PSSMA may arise by changing the bacterial proteins and thus interfering with the normal cell function.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3