Affiliation:
1. Department of Mathematics , Corvinus University of Budapest , H-1828 Budapest Hungary
Abstract
Abstract
Existence of viable trajectories to nonautonomous differential inclusions are proven for time-dependent viability tubes. In the convex case we prove a double-selection theorem and a new Scorza-Dragoni type lemma. Our result also provides a new and palpable proof for the equilibrium form of Kakutani’s fixed point theorem.
Reference26 articles.
1. [1] AUBIN, J.-P.: Viability Theory, Birkhäuser, Boston, Basel, Berlin, 1991.
2. [2] AUBIN, J.-P. and CELLINA, A.: Differential Inclusions, Springer-Verlag, Berlin, 1984.10.1007/978-3-642-69512-4
3. [3] AUBIN, J.-P., LYGEROS, J., QUINCAMPOIX, M., SASTRY, S., and SEUBE, N.: Impulse differential inclusions: A viability approach to hybrid systems, IEEE Transactions on Automatic Control, 47 (2002): pp. 2-20.
4. [4] AUBIN, J.-P., BAYEN, A., and SAINT-PIERRE, P.: Viability Theory: New Directions. Springer-Verlag, Berlin, Heidelberg, 2011.10.1007/978-3-642-16684-6
5. [5] BOTHE, D.: Multivalued differential equations on graphs, Nonlinear Anal. Th. Meth. Appl., 18 (1992) pp. 245-252.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Viability and equilibrium in Banach spaces;Pure Mathematics and Applications;2022-10-01