Affiliation:
1. Department of Industrial Engineering , University of Salerno , Fisciano , Italy
Abstract
Abstract
Photovoltaic (PV) energy has become a promising energy source because the demand for electrical energy from renewable energy sources is increasing worldwide in recent decades. Due to efficiency issues, the Maximum Power Point Tracking (MPPT) has been developed to optimize the solar panel’s performance. This paper presents an MPPT model, made up of the analog component, which overcomes traditional MPPT methods’ weakness via the Perturb and observes (P&O) technique. In this case, the PV system includes a PV array, a DC/DC boost converter, a battery, and a load. The proposed method was precisely built and simulated using the Powersim, MATLAB Simulink, and SimCoupler Module. The components of the analog MPPT system were designed practically in detail. The experiment was carried out by using European Efficiency Test 50530, and the results showed the proposed model has higher efficiency over the digital MPPT technique, about 99.99% as maximum. Moreover, MPPT methods were tested under steady-state, irradiation variation, and space conditions to verify the system’s potential capability with PV module Solbian 52L.
Funder
Università degli Studi di Salerno
Subject
Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献