Affiliation:
1. 1Department of Biochemistry and Biophysics, University of California, Davis, California 95616, U.S.A.
Abstract
Abstract The conversion of prephenic acid to tyrosine can occur by two different routes: (a) oxidative decarboxylation (prephenate dehydrogenase) followed by transamination (aromatic aminotrans ferase); (b) transamination of prephenate forming the non-aromatic amino acid arogenic acid (prephenate am inotransferase) followed by oxidative decarboxylation (arogenate dehydrogenase). High activity of arogenate dehydrogenase was found in extracts of etiolated sorghum seedlings, while no evidence of prephenate dehydrogenase was observed. Arogenate dehydrogenase from sorghum eluted, with high recovery of activity (93%), as a single peak on DEAE-cellulose chromatography. The enzyme was strongly inhibited by tyrosine but was unaffected by phenylalanine, prephenate, or tryptophan. Kinetic analysis showed that tyrosine inhibition was competitive with arogenate and that the Ki for tyrosine (61 μm) was much smaller than the Km for arogenate (350 μm). The properties of arogenate dehydrogenase indicate that this enzyme is important in the regulation of tyrosine biosynthesis in sorghum. Strong inhibition of the enzyme by tyrosine may indicate that arogenate is a branch point in the shikimate pathway in plants and therefore arogenate may be a precursor to phenylalanine and the numerous phenylpropanoid secondary metabolites derived from phenylalanine.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献