Affiliation:
1. 1Institut für Biochemie der Pflanze der Universität Göttingen. Untere Karspüle 2. D-3400 Göttingen, Bundesrepublik Deutschland
Abstract
Abstract Acetyl-CoA and Fatty Acid Synthesis, Chloroplasts The present investigation indicates that photosynthetically active chloroplasts can synthesize acetyl-CoA either from acetate via acetyl-CoA synthetase (ACS) or from pyruvate via the pyru vate dehydrogenase complex (PDC). Both enzyme systems have been assayed in rapidly prepared extracts of chloroplasts isolated from spinach, peas and maize mesophyll. Their kinetic properties showed few species-specific differences. The differing pyruvate and acetate concentrations within the corresponding leaf tissues have been interpreted, therefore, as constituting a major factor determining the relative involvement of both acetyl-CoA synthesizing systems within the different types of chloroplasts. The idea that acetate originates from mitochondria and pyruvate from the cytosol has been supported by nonaqueous fractionation studies. Diffusion-mediated faster up take of acetate may indicate a predominant role of the ACS in spinach chloroplasts. Higher cellular pyruvate/acetate-ratios (2-5) in pea and maize leaves may enhance pyruvate uptake into chloroplasts and thus PDC-driven acetyl-CoA synthesis in pea and maize mesophyll chloroplasts. Maize mesophyll chloroplasts even show a light-driven pyruvate uptake accompanied by a stimulated acetyl-CoA and fatty acid formation. Assuming light-dependent increasing parameters in the stroma space, like Mg2+-concentrations, pH and ATP, as further control criteria in chloroplast acetyl-CoA formation, the ACS appears better adapted to the circumstances in illuminated chloroplasts because of the fact that 1. the ACS requires these cofactors altogether; 2. the PDC is stimulated by increasing pH (up to 8) and Mg-levels (up to 5 mᴍ) alone.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献