The Sensitivity of the Ventral Nerve Photoreceptor of Limulus Recovers after Light Adaptation in Two Phases of Dark Adaptation

Author:

Claßen-Linke I.1,Stieve H.1

Affiliation:

1. 1Institut für Neurobiologie der Kernforschungsanlage Jülich GmbH , Postfach 1913, D-5170 Jülich, Bundesrepublik Deutschland

Abstract

The time course of the recovery of the sensitivity of the Limulus ventral nerve photoreceptor was measured during dark adaptation following light adaptation by a bright 1 or 5 s illumination. The stimulus intensity ICR of a 300 μs light flash evoking a response of criterion amplitude (receptor potential or receptor current under voltage clamp conditions) was used as measure of sensitivity.The time course of dark adaptation shows two phases with time constants in the range of 5-9 s and 300-500 s (15 °C). Only the first of the two phases is significantly changed when the extracel- lular Ca2+-concentration is varied.The power function ICR = a·Io-tDA-b gives a good data fit for each of the two phases of dark adaptation. In the first phase the factor ax and the exponent bx are decreased when the external calcium is lowered from 10 mmol/1 to 250 μmol/1. Conversely a1 and b1 are increased when the Ca2+-concentration is raised to 40 mmol/1. For the second phase neither a2 nor b2 is changed significantly upon the changes in calcium concentration in the same experiments.The two phases of dark adaptation reflect the behaviour of the two components C1 and C2 of the electrical light response (receptor potential or receptor current). Under the conditions described here C, determines the size of the light response during the first phase of dark adaptation whereas C2 mainly influences the size of the response during the second phase.Interpretation: The fast first phase of dark adaptation is determined by the change in intracellu- lar Ca2+-concentration. The slower second phase of dark adaptation is not primarily calcium- controlled.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3