Microstructure and Pitting Corrosion Characteristics of Tig Welded Joints of Super 304HCu Austenitic Stainless Steel

Author:

Vinoth Kumar M.1,Rajendran C.2,Balasubramanian V.3

Affiliation:

1. Department of Mechanical Engineering, Hindustan Institute of Technology and Science , Chennai , India

2. Department of Mechanical Engineering, Sri Krishna College of Engineering and Technology , Coimbatore - India

3. Director Research and Development, Annamalai University , Annamalai Nagar , Chennai India

Abstract

Abstract Super 304HCu is an advanced ultra-super critical (A-USC) boiler grade austenitic stainless steel with the distinct addition of 3 wt.-% of Copper. A-USC power plants intended to operate in chloride rich environments (sea shore, feed water residues, etc.) are susceptible to chloride assisted corrosion failures. In this study, the pitting corrosion behaviour of the Super 304HCu parent material and tungsten inert gas weld joints was studied using a potentiodynamic cyclic polarization test in 3.5 % NaCl solution at three different pH levels (pH = 3, pH = 7, and pH = 11). The Epit values of the parent material is found to be much nobler than that of the weld joints. The micrographs of the pitted weld joints and the oxalic acid etched structure of Super 304HCu joints are presented. From the micrographs it is revealed that the heat affected zone is the most susceptible region to pitting corrosion.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3