Structural analysis of Cu-based FeCr reinforced composites prepared by mechanical alloying

Author:

Yilmaz S. O.1,Teker T.2,Aydin S.2

Affiliation:

1. Tekirdağ Namık Kemal University, Faculty of Engineering, Department of Mechanical Engineering , , Çorlu , Tekirdağ , Turkey

2. Sivas Cumhuriyet University, Faculty of Technology, Department of Manufacturing Engineering , , Sivas , Turkey

Abstract

Abstract Production and structural investigations of Cu-based FeCr reinforced composite were performed by using mechanical alloying, optical microscope, scanning electron microscope, X-ray diffraction and hardness test. The increment in FeCr addition caused the increment in the cold deformation rate. This situation resulted in breakage of the powder particles throughout mechanical alloying. Thus, the grain dimension of the FeCr powders decreased and the Fe wt.% in the CuCr powders advanced. The collision force between the Cu-Cr powder and the grinding ball weakened with the increase of FeCr concentration and resulted as higher reinforcement size. After mechanical milling, FeCr grains decreased in size more than copper grains due to the ductility of copper grains. The smaller crystals occurred after grinding, and increased the grain boundary zone for further spread of Cr into the Cu. Despite the high sintering process, the high sintering temperature improved the compactness of the alloys, but caused coarsening of the nanoparticles. The mechanical alloying time, reinforcement wt.% and sinter temperature were effective on the micro-hardness of the microstructure.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3