Determination of grain size distribution of prior austenite grains through a combination of a modified contrasting method and machine learning

Author:

Laub M.1,Bachmann B.-I.23,Detemple E.4,Scherff F.4,Staudt T.4,Müller M.23,Britz D.3,Mücklich F.23,Motz C.1

Affiliation:

1. Saarland University, chair for materials science and methods , Saarbrücken , Saarland Germany

2. Saarland University, chair for functional materials , Saarbrücken , Saarland Germany

3. Material Engineering Center Saarland , Saarbrücken , Saarland Germany

4. AG der Dillinger Hüttenwerke, Research & Development , Dillingen , Saarland Germany

Abstract

Abstract The prior austenite grain size (PAGS) represents one of the most significant microstructural parameters for steel research and process development. Since the PAGS directly correlates with recrystallisation during rolling in the manufacturing process of steel plates, it has a huge influence on its mechanical properties. Methods to determine the PAGS reliably and reproducibly are in high demand. There are several different approaches, based on different working principles, aiming to measure the PAGS. In this paper, the focus will be held on chemical etching methods because they allow, other than indirect techniques, space-resolved images as output, coupled with a fast application with good statistics and do not necessarily require a pretreatment of the specimen that can alter properties of interest. A parameter study has been conducted to identify unknown influencing variables as well as to tune well known parameters for their application to low-carbon steels. In the scope of this work, a novel and objective way of determining the PAGS is being presented. A reproducible approach has been developed that is able to automatically reconstruct the prior austenite grain boundaries (PAGB) from low-carbon steels and thereby determining the PAGS. Based on an improved etching recipe, a routine could be elaborated using modern methods of machine learning in the field of computer vision that is able to quantitatively analyze optical micrographs. Semantic segmentation is used to detect the PAGB based on correlative EBSD data and expert’s annotations; thus, reconstructing the prior morphological microstructure. Therefore, besides the determination of the average grain size, the distribution of the PAGS and their morphological parameters can be quantified.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3