Newborn screening for primary carnitine deficiency using a second-tier genetic test

Author:

Lin Yiming1,Lin Chunmei1,Zheng Zhenzhu1,Huang Chenggang2,Peng Weilin1

Affiliation:

1. Department of Clinical Laboratory , Quanzhou Maternity and Children’s Hospital , Quanzhou , Fujian Province , China

2. Zhejiang Biosan Biochemical Technologies Co., Ltd. , Hangzhou , Zhejiang Province , China

Abstract

Abstract Objectives Newborn screening (NBS) for primary carnitine deficiency (PCD) exhibits suboptimal performance. This study proposes a strategy to enhance the efficacy of second-tier genetic screening by adjusting the cutoff value for free carnitine (C0). Methods Between January 2021 and December 2022, we screened 119,898 neonates for inborn metabolic disorders. Neonates with C0 levels below 12 μmol/L were randomly selected for second-tier genetic screening, employing a novel matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assay. Results In total, 2,515 neonates with C0 <12 μmol/L underwent further screening, including 206 neonates with C0 <8.5 μmol/L and 320 neonates with 8.5<C0<12 μmol/L. Genetic screening identified positive results in 12.36 % (65) of neonates, with one being homozygous, 10 compound heterozygotes, and 54 heterozygotes. Sanger sequencing revealed a second SLC22A5 variant in three of the 54 neonates. Ultimately, 14 patients were diagnosed with PCD; all 14 patients exhibited low C0 levels, though two had normal C0 levels during the recall review. The MALDI-TOF MS assay demonstrated detection and diagnostic rates of 89.29 % and 78.57 %, respectively. Eleven distinct SLC22A5 variants were identified, with the most common variant being c.51C>G, accounting for 25 % (7/28) of allelic frequencies. Conclusions A novel MALDI-TOF MS assay targeting 21 SLC22A5 variants in a Chinese population was successfully established. This assay exhibits a high detection and diagnostic rate, making it suitable for population-based genetic screening. Combined genetic screening is recommended to enhance the efficiency of PCD–NBS.

Funder

Fujian Provincial Society of Laboratory Medicine and National (Fujian) Genetic Testing Technology Application Demonstration Center

Quanzhou City Science and Technology Program of China

Joint Innovation Project of Huaqiao University

Natural Science Foundation of Fujian Province

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3