Insights into the multistep transformation of titanate nanotubes into nanowires and nanoribbons

Author:

Baszczuk Agnieszka1,Jasiorski Marek1,Borak Beata1,Wódka Jerzy2

Affiliation:

1. Wrocław University of Technology, Department of Mechanics, Materials Science and Engineering, Smoluchowskiego 25, 50-370 Wrocław, Poland

2. Wrocław University of Technology, Faculty of Chemistry, Smoluchowskiego 23, 50-370 Wroclaw, Poland

Abstract

Abstract Different types of titanate one-dimensional nanostructured materials were synthesized and characterized using scanning and transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The results presented in this work unquestionably showed dependence of morphology and structure of the titanate nanopowders on parameters of hydrothermal synthesis. It was found that nanotubes, nanowires and nanoribbons are three unavoidable kinetic products of hydrothermal reaction. Moreover, increasing temperature of reaction or hydrothermal treatment duration results in acceleration of nanotube-nanowire-nanoribbon transformation. However, the sequence of titanate morphology transformation is invariable. The detailed studies further revealed that the crystal structure of hydrothermally prepared nanotubes and nanowires are indistinguishable but the determination of the exact structure is practically impossible. Because of higher crystallinity, the structure of nanoribbons can be established. It was shown that it corresponds to the monoclinic layered trititanic acid H2Ti3O7 and is isostructural with sodium derivatives Na2_xHxTi3O7.nH20 (with x near 2).

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3