First-principle calculations of effective mass of silicon crystal with vacancy defects

Author:

Zhong Shuying12,Wu Musheng1,Lei Xueling1

Affiliation:

1. Institute of Physics and Communication & Electronics, Jiangxi Normal University, Nanchang 330022, P.R.China

2. School of Materials Science and Engineering, Nanchang University, Nanchang 330031, P.R.China

Abstract

Abstract The energy band structures and electron (hole) effective masses of perfect crystalline silicon and silicon with various vacancy defects are investigated by using the plane-wave pseudopotential method based on density functional theory. Our results show that the effect of monovacancy and divacancy on the energy band structure of crystalline silicon is primarily reflected in producing the gap states and the local states in valence band maximum. It also causes breaking the symmetry of energy bands resulting from the Jahn-Teller effect, while only producing the gap states for the crystalline silicon with hexavacancy ring. However, vacancy point defects could not essentially affect the effective masses that are derived from the native energy bands of crystalline silicon, except for the production of defect states. Simultaneously, the Jahn-Teller distortions only affect the gap states and the local states in valence band maximum, but do not change the symmetry of conduction band minimum and the nonlocal states in valence band maximum, thus the symmetry of the effective masses. In addition, we study the electron (hole) effective masses for the gap states and the local states in valence band maximum.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3