Affiliation:
1. College of Science, Civil Aviation University of China, Tianjin 300300, PR China
Abstract
Abstract
Au-modified ZnO (Au/ZnO) nanoparticles (NPs) synthesized using bamboo cellulose template and calcination process were characterized using X-ray diffraction, field-emission scanning electron microscopy, and transmission electron microscopy. The gas-sensing performance of Au/ZnO NPs based sensors was also examined. The results indicated that the Au/ZnO NPs exhibited enhanced gas-sensing performance compared with that of pure ZnO. The response of the Au/ZnO NPs to 100 ppm ethanol (50) at 240 °C was nearly 2.7 times higher than that to acetone (18.4) and approximately 12.5 times higher than that to benzene (4.1), carbon monoxide (1.6), hydrogen (1.6), and methane (1.8), respectively, which demonstrated their higher selectivity to ethanol versus other gases. This high response to ethanol could be attributed to the small size, Schottky barrier, and catalysis.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献