Microbiological and Energetic Assessment of the Effects of the Biodrying of Fuel Produced from Waste

Author:

Malinowski Mateusz1,Wolny-Koładka Katarzyna2

Affiliation:

1. Department of Technical Infrastructure and Eco-power Engineering, Institute of Agricultural Engineering and Computer Science , University of Agriculture in Krakow , ul. Balicka 116 b/311, 30-149 Kraków , Poland , phone +48 12 662 46 60

2. Department of Microbiology , University of Agriculture in Krakow , al. A. Mickiewicza 24/28, 30-059 Kraków , Poland , phone +48 12 662 40 96

Abstract

Abstract Biological drying (biodrying) is one of the methods of biological processing of waste, used mainly as part of the mechanical biological treatment of mixed municipal waste. Biological drying uses the heat released during the decomposition of organic matter to reduce the amount of water in dried waste. The aim of the analyses was to provide a microbiological and energetic (fuel) assessment of the process of biodrying of alternative fuel (RDF) obtained by mechanical sorting of mixed municipal waste. The resulting alternative fuel (obtained with just sorting) is characterised by varied moisture content and the presence of diverse groups of microorganisms. The analyses were intended to assess 3 alternative methods of biodrying of alternative fuel in order to produce a stable end product for utility power generation and the cement industry. The analyses were performed using special bioreactors equipped with custom (innovative) fluidised bed, aeration system (air flow rate 500 m3 · h−1), effluents drain systems, post-process air offtake and 4 temperature sensors. The assessment of the impact of the employed bed aeration methods on the quality of the alternative fuel was performed in 3 repetitions with the same external parameters. The obtained results show that after 8 days of biodrying, in the most favourable option, the moisture content in the fuel was reduced to the level of 18.7%, i.e. by 39%, the resulting fuel was microbiologically stable and the calorific value of the fuel was increased on average by 3.2 MJ · kg−1.

Publisher

Walter de Gruyter GmbH

Subject

Environmental Chemistry,Environmental Engineering

Reference55 articles.

1. [1] Skutan S, Brunner H. Metals in RDF and other high calorific value fractions from mechanical treatment of MSW: Analysis and sampling errors. Waste Manage Res. 2012;30.7:645-655. DOI: 10.1177/0734242X12442740.10.1177/0734242X12442740

2. [2] Malinowski M. Selected properties of an alternative fuel manufactured from municipal solid waste. Infrastruct Ecol Rural Areas. 2013;2013/4/2:125-139. http://www.infraeco.pl/pl/art/a_17260.htm?plik=1520.

3. [3] Mokrzycki E, Uliasz-Bocheńczyk A, Sarna M. Use of alternative fuels in the Polish cement industry. Appl Energy. 2003;74:101-111. DOI: 10.1016/S0306-2619(02)00136-8.10.1016/S0306-2619(02)00136-8

4. [4] Trezza MA, Scian AN. Waste fuels: their effect on Portland cement clinker. Cement and Concrete Res. 2005;35:438-444. DOI: 10.1016/j.cemconres.2004.05.045.10.1016/j.cemconres.2004.05.045

5. [5] Yuan J, Zhang D, Li Y, Chadwick D, Li G, Li Y, Du L. Effects of adding bulking agents on biostabilization and drying of municipal solid waste. Waste Manage. 2017;62:52-60. DOI: 10.1016/j.wasman.2017.02.027.10.1016/j.wasman.2017.02.027

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3