Application of Chemometric Analysis to the Study of Snow at the Sudety Mountains, Poland

Author:

Błaś Marek1,Polkowska Żaneta2,Simeonov Vasil3,Tsakovski Stefan4,Sobik Mieczysław1,Kozak Katarzyna2,Namieśnik Jacek2

Affiliation:

1. Department of Climatology and Atmosphere Protection, Institute of Geography and Regional Development, University of Wroclaw, ul. A. Kosiby 8, 51-670 Wroclaw, Poland

2. Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland

3. Chair of Analytical Chemistry, Faculty of Chemistry, University of Sofia, J Bourchier Blvd. 1, 1164 Sofia, Bulgaria

4. Chair of Physical Chemistry, Faculty of Chemistry, University of Sofia, J Bourchier Blvd. 1, 1164 Sofia, Bulgaria

Abstract

Abstract Snow samples were collected during winter 2011/2012 in three posts in the Western Sudety Mountains (Poland) in 3 consecutive phases of snow cover development, i.e. stabilisation (Feb 1st), growth (Mar 15th) and its ablation (Mar 27th). To maintain a fixed number of samples, each snow profile has been divided into six layers, but hydrochemical indications were made for each 10 cm section of core. The complete data set was subjected in the first run of chemometric data interpretation to Cluster Analysis as well as Principal Components Analysis. Further, Self-Organizing Maps, type of neutral network described by Kohonen were used for visualization and interpretation of large high-dimensional data sets. For each site the hierarchical Ward’s method of linkage, squared Euclidean distance as similarity measure, standardized raw data, cluster significance test according to Sneath’s criterion clustering of the chemical variables was done. Afterwards this grouping of the chemical variables was confirmed by the results from Principal Components Analysis. The major conclusion is that the whole system of three sampling sites four patterns of variable groupings are observed: the first one is related to the mineral salt impact; the second one - with the impact of secondary emissions and organic pollutants; next one - with dissolved matter effect and the last one - with oxidative influence, again with relation to anthropogenic activities like smog, coal burning, traffic etc. It might be also concluded that specificity of the samples is determined by the factors responsible for the data set structure and not by particular individual or time factors.

Publisher

Walter de Gruyter GmbH

Subject

Environmental Chemistry,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3