Continuity properties of weakly monotone Orlicz–Sobolev functions

Author:

Carozza Menita1,Cianchi Andrea2

Affiliation:

1. Dipartimento di Ingegneria , Università del Sannio , Corso Garibaldi 107, 82100 Benevento , Italy

2. Dipartimento di Matematica e Informatica “U. Dini” , Università di Firenze , Viale Morgagni 67/A, 50134 Firenze , Italy

Abstract

Abstract The notion of weakly monotone functions extends the classical definition of monotone function, that can be traced back to Lebesgue. It was introduced, in the framework of Sobolev spaces, by Manfredi, in connection with the analysis of the regularity of maps of finite distortion appearing in the theory of nonlinear elasticity. Diverse authors, including Iwaniecz, Kauhanen, Koskela, Maly, Onninen, Zhong, thoroughly investigated continuity properties of monotone functions in the more general setting of Orlicz–Sobolev spaces, in view of the analysis of continuity, openness and discreteness properties of maps under minimal integrability assumptions on their distortion. The present paper complements and augments the available Orlicz–Sobolev theory of weakly monotone functions. In particular, a variant is proposed in a customary condition ensuring the continuity of functions from this class, which avoids a technical additional assumption, and applies in certain situations when the latter is not fulfilled. The continuity outside sets of zero Orlicz capacity, and outside sets of (generalized) zero Hausdorff measure are also established when everywhere continuity fails.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Invertibility of Orlicz–Sobolev Maps;Association for Women in Mathematics Series;2022

2. Relaxation of nonlinear elastic energies related to Orlicz–Sobolev nematic elastomers;Rendiconti Lincei - Matematica e Applicazioni;2020-06-30

3. Orlicz–Sobolev nematic elastomers;Nonlinear Analysis;2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3