Higher order intrinsic weak differentiability and Sobolev spaces between manifolds

Author:

Convent Alexandra1,Van Schaftingen Jean1

Affiliation:

1. Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, Chemin du Cyclotron 2 bte L7.01.01, 1348Louvain-la-Neuve, Belgium

Abstract

AbstractWe define the notion of higher-order colocally weakly differentiable maps from a manifold M to a manifold N. When M and N are endowed with Riemannian metrics, {p\geq 1} and {k\geq 2}, this allows us to define the intrinsic higher-order homogeneous Sobolev space {\dot{W}^{k,p}(M,N)}. We show that this new intrinsic definition is not equivalent in general with the definition by an isometric embedding of N in a Euclidean space; if the manifolds M and N are compact, the intrinsic space is a larger space than the one obtained by embedding. We show that a necessary condition for the density of smooth maps in the intrinsic space {\dot{W}^{k,p}(M,N)} is that {\pi_{\lfloor kp\rfloor}(N)\simeq\{0\}}. We investigate the chain rule for higher-order differentiability in this setting.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference100 articles.

1. Intrinsic co-local weak derivatives and Sobolev spaces between manifolds;Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),2016

2. The imbedding problem for Riemannian manifolds;Ann. of Math. (2),1956

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local Minimality of Weak Geodesics on Prox-Regular Subsets of Riemannian Manifolds;Mediterranean Journal of Mathematics;2024-05

2. Nonholonomic and constrained variational mechanics;Journal of Geometric Mechanics;2020

3. Uniform boundedness principles for Sobolev maps into manifolds;Annales de l'Institut Henri Poincaré C, Analyse non linéaire;2019-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3