Affiliation:
1. Mathematical Institute , Tohoku University , Aoba , Sendai 980-8578 , Japan
Abstract
Abstract
Let H be a norm of
ℝ
N
{\mathbb{R}^{N}}
and
H
0
{H_{0}}
the dual norm of H.
Denote by
Δ
H
{\Delta_{H}}
the Finsler–Laplace operator defined by
Δ
H
u
:=
div
(
H
(
∇
u
)
∇
ξ
H
(
∇
u
)
)
{\Delta_{H}u:=\operatorname{div}(H(\nabla u)\nabla_{\xi}H(\nabla u))}
.
In this paper we prove that
the Finsler–Laplace operator
Δ
H
{\Delta_{H}}
acts as a linear operator to
H
0
{H_{0}}
-radially symmetric smooth functions.
Furthermore, we obtain an optimal sufficient condition for the existence of the solution
to the Cauchy problem for the Finsler heat equation
∂
t
u
=
Δ
H
u
,
x
∈
ℝ
N
,
t
>
0
,
\partial_{t}u=\Delta_{H}u,\quad x\in\mathbb{R}^{N},\,t>0,
where
N
≥
1
{N\geq 1}
and
∂
t
:=
∂
∂
t
{\partial_{t}:=\frac{\partial}{\partial t}}
.
Funder
Japan Society for the Promotion of Science
Subject
Applied Mathematics,Analysis
Reference38 articles.
1. D. Andreucci and E. DiBenedetto,
A new approach to initial traces in nonlinear filtration,
Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), no. 4, 305–334.
2. D. Andreucci and E. DiBenedetto,
On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 18 (1991), no. 3, 363–441.
3. D. G. Aronson,
Non-negative solutions of linear parabolic equations,
Ann. Sc. Norm. Sup. Pisa (3) 22 (1968), 607–694.
4. D. Bao, S.-S. Chern and Z. Shen,
An Introduction to Riemann–Finsler Geometry,
Grad. Texts in Math. 200,
Springer, New York, 2000.
5. P. Baras and M. Pierre,
Critère d’existence de solutions positives pour des équations semi-linéaires non monotones,
Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 3, 185–212.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献