On the Wasserstein distance between mutually singular measures

Author:

Buttazzo Giuseppe1,Carlier Guillaume2,Laborde Maxime3

Affiliation:

1. Dipartimento di Matematica , Università di Pisa , Largo B. Pontecorvo 5, 56127 Pisa , Italy

2. CEREMADE UMR CNRS 7534 , Université de Paris Dauphine , Place de Lattre de Tassigny, 75775 Paris Cedex 16 , France

3. Department of Mathematics and Statistics , McGill University , 805 Rue Sherbrooke Ouest , Montréal , Canada

Abstract

Abstract We study the Wasserstein distance between two measures μ , ν {\mu,\nu} which are mutually singular. In particular, we are interested in minimization problems of the form W ( μ , 𝒜 ) = inf { W ( μ , ν ) : ν 𝒜 } , W(\mu,\mathcal{A})=\inf\{W(\mu,\nu):\nu\in\mathcal{A}\}, where μ is a given probability and 𝒜 {\mathcal{A}} is contained in the class μ {\mu^{\perp}} of probabilities that are singular with respect to μ. Several cases for 𝒜 {\mathcal{A}} are considered; in particular, when 𝒜 {\mathcal{A}} consists of L 1 {L^{1}} densities bounded by a constant, the optimal solution is given by the characteristic function of a domain. Some regularity properties of these optimal domains are also studied. Some numerical simulations are included, as well as the double minimization problem min { P ( B ) + k W ( A , B ) : | A B | = 0 , | A | = | B | = 1 } , \min\{P(B)+kW(A,B):|A\cap B|=0,\,|A|=|B|=1\}, where k > 0 {k>0} is a fixed constant, P ( A ) {P(A)} is the perimeter of A, and both sets A , B {A,B} may vary.

Funder

Agence Nationale de la Recherche

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference17 articles.

1. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in Metric Spaces and in the Space of Probability Measures, 2nd ed., Lect. in Math. ETH Zürich, Birkhäuser, Basel, 2008.

2. J.-B. Baillon and G. Carlier, From discrete to continuous Wardrop equilibria, Netw. Heterog. Media 7 (2012), no. 2, 219–241.

3. J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna and G. Peyré, Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput. 37 (2015), no. 2, A1111–A1138.

4. A. Blanchet, G. Carlier and L. Nenna, Computation of Cournot–Nash equilibiria by entropic regularization, preprint (2016), http://arxiv.org/abs/1609.02814.

5. L. Chizat, G. Peyré, B. Schmitzer and F. X. Vialard, Scaling algorithms for unbalanced transport problems, preprint (2016), https://arxiv.org/abs/1607.05816.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling self-aggregation of stochastic particles: A Γ-convergence approach;Mathematical Models and Methods in Applied Sciences;2024-07-27

2. The five gradients inequality on differentiable manifolds;Journal de Mathématiques Pures et Appliquées;2024-07

3. Monge–Kantorovich interpolation with constraints and application to a parking problem;Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications;2024-03-06

4. Minimizing Optimal Transport for Functions with Fixed-Size Nodal Sets;Journal of Nonlinear Science;2023-08-14

5. The five gradients inequality for non quadratic costs;Comptes Rendus. Mathématique;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3