Serial block-face scanning electron microscopy of adherent cells on thin plastic substrate

Author:

Kauter Anne1,Bürge Silvio1,Klotz Christian2,Laue Michael1ORCID

Affiliation:

1. Advanced Light and Electron Microscopy (ZBS 4), Centre for Biological Threats and Special Pathogens , Robert Koch Institute , Seestraße 10, D-13353 Berlin , Germany

2. Mycotic and Parasitic Agents and Mycobacteria (FG16), Department of Infectious Diseases , Robert Koch Institute , D-13353 Berlin , Germany

Abstract

Abstract Serial block-face (SBF) scanning electron microscopy (SEM) is used for imaging the entire internal ultrastructure of cells, tissue samples or small organisms. Here, we present a workflow for SBF SEM of adherent cells, such as Giardia parasites and HeLa cells, attached to the surface of a plastic culture dish, which preserves the interface between cells and plastic substrate. Cells were embedded in situ on their substrate using silicone microwells and were mounted for cross-sectioning which allowed SBF imaging of large volumes and many cells. A standard sample preparation and embedding protocol for thin section electron microscopy provided already sufficient resolution and image quality to visualize larger structures. To improve resolution and image quality of SBF imaging, we stepwise tested modifications of the protocol, such as the moderate increase of the heavy metal content of the sample. Modifications of the embedding by either the reduction of the resin layer (minimal embedding) or the addition of silver colloid to the resin were evaluated at high and low vacuum imaging conditions. The optimized sample preparation protocol is very similar to the standard preparation protocol for thin section electron microscopy, so that the samples can also be used for this application. The protocol applies a higher concentration of osmium tetroxide, a higher temperature for heavy metal incubation and an additional lead en bloc staining. In summary, the presented workflow provides a generic and adaptable solution for studying adherent cells by SBF SEM.

Funder

German Research Foundation

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3