Global geopotential models evaluation based on terrestrial gravity data over Ethiopia

Author:

Alemu Eyasu1

Affiliation:

1. Geodesy and Geodynamics Research and Development Department , Space Science and Geospatial Institute (SSGI) , Addis Ababa , Ethiopia

Abstract

Abstract The availability of high-degree and recent global geopotential models is a crucial resource for different geodetic and geophysical applications such as modelling of geoid and quasi-geoid and establishing global reference and height systems, estimating Moho depth, gravity anomaly and tectonics, other geopotential functional, and oceanography, which emphasizes the importance for model evaluation. We have therefore estimated complete Bouguer anomalies and Moho whose results are evaluated with the terrestrial values. We validate the recently released satellite-only and high-degree combined GGMs over Ethiopia using terrestrial gravity data based on a statistical comparison of the Bouguer anomaly, its residual and Moho depth. The terrestrial-derived gravity anomaly is more accurately estimated by EIGEN6C4. The assessment against a recently conducted high resolution (∼3 km) terrestrial and airborne gravimetric survey over Ethiopia shows that EIGEN6C4/SGG_UGM_1 and 2 have the highest accuracy (∼3.28/3.27 mGal). However, the comparison with such data hardly discriminates the qualities of other GGMs that have or are truncated to the same degree and order. Whereas, the validation results of GGMs against terrestrial and airborne data are identical. EIGEN6C4, SGG_UGM_2, XGM2016, XGM2019e_2159/SGG_UGM_1 have the best quality, and the accuracy of associated Moho is 4.89/4.90 km, and this value changes to 4.98/4.91/5.51 km when the EGM08/ITSG_Grace2018s/GOCO06S are assessed.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moho depth estimation of northern of East African Rift System;Journal of Applied Geodesy;2023-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3