Affiliation:
1. Geodesy and Geodynamics Research and Development Department , Space Science and Geospatial Institute (SSGI) , Addis Ababa , Ethiopia
Abstract
Abstract
The availability of high-degree and recent global geopotential models is a crucial resource for different geodetic and geophysical applications such as modelling of geoid and quasi-geoid and establishing global reference and height systems, estimating Moho depth, gravity anomaly and tectonics, other geopotential functional, and oceanography, which emphasizes the importance for model evaluation. We have therefore estimated complete Bouguer anomalies and Moho whose results are evaluated with the terrestrial values. We validate the recently released satellite-only and high-degree combined GGMs over Ethiopia using terrestrial gravity data based on a statistical comparison of the Bouguer anomaly, its residual and Moho depth. The terrestrial-derived gravity anomaly is more accurately estimated by EIGEN6C4. The assessment against a recently conducted high resolution (∼3 km) terrestrial and airborne gravimetric survey over Ethiopia shows that EIGEN6C4/SGG_UGM_1 and 2 have the highest accuracy (∼3.28/3.27 mGal). However, the comparison with such data hardly discriminates the qualities of other GGMs that have or are truncated to the same degree and order. Whereas, the validation results of GGMs against terrestrial and airborne data are identical. EIGEN6C4, SGG_UGM_2, XGM2016, XGM2019e_2159/SGG_UGM_1 have the best quality, and the accuracy of associated Moho is 4.89/4.90 km, and this value changes to 4.98/4.91/5.51 km when the EGM08/ITSG_Grace2018s/GOCO06S are assessed.
Subject
Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation
Reference51 articles.
1. Abbate, E, Bruni, P, Sagri, M. Geology of Ethiopia: a review and geomorphological perspectives. In: World geomorphological landscapes; 2015:33–64 pp.
2. Squire, R, Campbell, I, Allen, C, Wilson, C. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on earth? Earth Planet Sci Lett 2006;250:116–33. https://doi.org/10.1016/j.epsl.2006.07.032.
3. Barthelmes, F. Global models. In: Grafarend, E, editor. Encyclopedia of geodesy. Encyclopedia of Earth sciences series; 2014:1–9 pp.
4. Pavlis, NK, Holmes, SA, Kenyon, SC, Factor, JK. The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res Solid Earth 2012;117:4–32. https://doi.org/10.1029/2011jb008916.
5. Förste, C, Bruinsma, SL, Abrikosov, O, Lemoine, JM, Marty, JC, Flechtner, F, et al.. EIGEN6C4: the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. Germany: GFZ Data Services; 2014.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献