Investigation of determining the accuracy of spatial vectors by the satellite method in a real time mode

Author:

Vivat Anatolii1ORCID,Tretyak Kornyliy2ORCID,Savchyn Ihor2ORCID,Navodych Myhailo3ORCID,Lano Oleksandr3ORCID

Affiliation:

1. Department of Engineering Geodesy , Lviv Polytechnic National University , Lviv , Ukraine

2. Department of Higher Geodesy and Astronomy , Lviv Polytechnic National University , Lviv , Ukraine

3. Educational and Scientific Laboratory of Processing of Satellite Measurements , Lviv Polytechnic National University , Lviv , Ukraine

Abstract

Abstract The study of determining the accuracy of spatial vectors by the global navigation satellite system (GNSS) in real time (RTK) was conducted. The possibility of construction of precision geodetic networks by the combined method of static and RTK GNSS measurements which correspond to the set accuracy and reach the maximum economic efficiency is investigated. A technique providing the densification of GNSS network and the use of two simultaneously operating GNSS receivers (Rover) is proposed. The research was carried out at the points of the GNSS network of Dnister Pumped Storage Power Plant (PSPP) (Ukraine). As a result of comparison of reference and measured elements of vectors, it was found that the average absolute error in determining the spatial distance of 14 vectors was 5.3 mm. Rejection of vectors with a closed horizon reduced the error to 2.1 mm. The vectors are most accurately determined from two satellite systems (GPS, GLONASS) and from a single base station. The recommended distance to the base station is within one kilometer. Increasing the accuracy by 75 % in determining the vector by the proposed method in RTK mode is also shown. As a result of a posteriori optimization of combined GNSS networks, high accuracy on the reliability of vectors determined by the method in RTK mode was confirmed. The technique can be used to construct precision networks, to carry out repeated measurements for the monitoring of large engineering structures with an open horizon.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3