Real movement or systematic errors? – TLS-based deformation analysis of a concrete wall

Author:

Jost Berit1,Coopmann Daniel1,Holst Christoph2,Kuhlmann Heiner1

Affiliation:

1. Institute of Geodesy and Geoinformation , University of Bonn , Nussallee 17, 53115 Bonn , Germany

2. TUM School of Engineering and Design , Technical University of Munich, Chair of Engineering Geodesy, Arcisstra ß e 21 , 80333 Munich , Germany

Abstract

Abstract Performing deformation analyses with high accuracy demands using terrestrial laser scanners is very challenging due to insufficient knowledge about the error budget and correlations. Terrestrial laser scans suffer from random and systematic errors that degrade the quality of the point cloud. Even though the vast majority of systematic errors can be calibrated, remaining errors or errors that vary with time or temperature influence spatially neighboring points in the same way. Hence, correlations between the measurements exist. Considering area-based deformation analyses, these correlations have two effects: On the one hand, they reduce the effective number of measurements in the point cloud, which mainly influences the decision of whether the movement is significant or not. On the other hand, correlations caused by systematic errors in the scanner can lead to a misinterpretation as a deformation of the object. Within this study, we analyze the deformation of a concrete wall (9.50 m height, 50 m width), and we develop a workflow that avoids the misinterpretation of correlated measurements as deformations of the object. Therefore, we first calibrate the scanner to reduce the influence of systematic errors. Afterwards, we use the average of two-face measurements from several scanner stations to eliminate remaining systematic errors and correlated measurements. This study demonstrates that systematic effects can lead to errors of a few millimeters that are likely to be interpreted as small deformations, and it provides a strategy to avoid misinterpretation. Hence, it is inevitable either to model or to eliminate systematic errors of the scanner while performing a precise deformation analysis with a magnitude of a few millimeters.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3