Changes in the coelomic microclimate during carbon dioxide laparoscopy: morphological and functional implications

Author:

Wilson Robert B.1

Affiliation:

1. 1Department of Upper Gastrointestinal Surgery, Liverpool Hospital, Elizabeth St, Liverpool, Sydney, NSW, 2170, Australia

Abstract

AbstractIn this article the adverse effects of laparoscopic CO2 pneumoperitoneum and coelomic climate change, and their potential prevention by warmed, humidified carbon dioxide insufflation are reviewed. The use of pressurized cold, dry carbon dioxide (C02) pneumoperitoneum causes a number of local effects on the peritoneal mesothelium, as well as systemic effects. These can be observed at a macroscopic, microscopic, cellular and metabolic level. Local effects include evaporative cooling, oxidative stress, desiccation of mesothelium, disruption of mesothelial cell junctions and glycocalyx, diminished scavenging of reactive oxygen species, decreased peritoneal blood flow, peritoneal acidosis, peritoneal hypoxia or necrosis, exposure of the basal lamina and extracellular matrix, lymphocyte infiltration, and generation of peritoneal cytokines such as IL-1, IL-6, IL-8 and TNFα. Such damage is increased by high CO2 insufflation pressures and gas velocities and prolonged laparoscopic procedures. The resulting disruption of the glycocalyx, mesothelial cell barrier and exposure of the extracellular matrix creates a cascade of immunological and pro-inflammatory events and favours tumour cell implantation. Systemic effects include cardiopulmonary and respiratory changes, hypothermia and acidosis. Such coelomic climate change can be prevented by the use of lower insufflation pressures and preconditioned warm humidified CO2. By achieving a more physiological temperature, pressure and humidity, the coelomic microenvironment can be better preserved during pneumoperitoneum. This has the potential clinical benefits of maintaining isothermia and perfusion, reducing postoperative pain, preventing adhesions and inhibiting cancer cell implantation in laparoscopic surgery.

Publisher

Walter de Gruyter GmbH

Subject

Internal Medicine

Reference188 articles.

1. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases;Nat Commun,2016

2. Shakespeare’s view of the laparoscopic pneumoperitoneum;JSLS,2011

3. The effects of insufflation conditions on rat mesothelium;Int J Inflamm,2013

4. Mesothelial cells: Their structure, function and role in serosal repair;Respirology,2002

5. The effects of insufflation conditions on rat mesothelium;Int J Inflamm,2013

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3