A Process-based Approach to Informational Privacy and the Case of Big Medical Data

Author:

Birnhack Michael

Abstract

Abstract Data protection law has a linear logic, in that it purports to trace the lifecycle of personal data from creation to collection, processing, transfer, and ultimately its demise, and to regulate each step so as to promote the data subject’s control thereof. Big data defies this linear logic, in that it decontextualizes data from its original environment and conducts an algorithmic nonlinear mix, match, and mine analysis. Applying data protection law to the processing of big data does not work well, to say the least. This Article examines the case of big medical data. A survey of emerging research practices indicates that studies either ignore data protection law altogether or assume an ex post position, namely that because they are conducted after the data has already been created in the course of providing medical care, and they use de-identified data, they go under the radar of data protection law. These studies focus on the end-point of the lifecycle of big data: if sufficiently anonymous at publication, the previous steps are overlooked, on the claim that they enjoy immunity. I argue that this answer is too crude. To portray data protection law in its best light, we should view it as a process-based attempt to equip data subjects with some power to control personal data about them, in all phases of data processing. Such control reflects the underlying justification of data protection law as an implementation of human dignity. The process-based approach fits current legal practices and is justified by reflecting dignitarian conceptions of informational privacy.

Publisher

Walter de Gruyter GmbH

Subject

Law

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Process Management as a Foundation for Integrating Agility and Discipline in Information Systems Development – A Study of Practices;International Conference on Information Systems Development;2024-09-09

2. Towards a privacy impact assessment methodology to support the requirements of the general data protection regulation in a big data analytics context: A systematic literature review;Computer Law & Security Review;2022-04

3. An Indirect Argument for the Access Theory of Privacy;Res Publica;2021-07-05

4. Index;Digital Data Collection and Information Privacy Law;2020-04-23

5. Bibliography;Digital Data Collection and Information Privacy Law;2020-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3