The Micromorphic Approach to Generalized Heat Equations

Author:

Liu Weijie,Saanouni Khemais,Forest Samuel,Hu Ping

Abstract

AbstractIn this paper, the micromorphic approach, previously developed in the mechanical context is applied to heat transfer and shown to deliver new generalized heat equations as well as the nonlocal effects. The latter are compared to existing formulations: the classical Fourier heat conduction, the hyperbolic type with relaxation time, the gradient of temperature or entropy theories, the double temperature model, the micro-temperature model or micro-entropy models. A new pair of thermodynamically-consistent micromorphic heat equations are derived from appropriate Helmholtz-free energy potentials depending on an additional micromorphic temperature and its first gradient. The additional micromorphic temperature associated with the classical local temperature is introduced as an independent degree of freedom, based on the generalized principle of virtual power. This leads to a new thermal balance equation taking into account the nonlocal thermal effects and involving an internal length scale which represents the characteristic size of the system. Several existing extended generalized heat equations could be retrieved from constrained micromorphic heat equations with suitable selections of the Helmholtz-free energy and heat flux expressions. As an example the propagation of plane thermal waves is investigated according to the various generalized heat equations. Possible applications to fast surface processes, nanostructured media and nanosystems are also discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3