Constitutive Relations of Thermal and Mass Diffusion

Author:

Bertei Antonio1,Lamorgese Andrea1,Mauri Roberto1

Affiliation:

1. Department of Civil and Industrial Engineering, 9310University of Pisa, Largo Lucio Lazzarino 2, 56122Pisa, Italy

Abstract

AbstractNon-equilibrium thermodynamics provides a general framework for the description of mass and thermal diffusion, thereby including also cross-thermal and material diffusion effects, which are generally modeled through the Onsager coupling terms within the constitutive equations relating heat and mass flux to the gradients of temperature and chemical potential. These so-called Soret and Dufour coefficients are not uniquely defined, though, as they can be derived by adopting one of the several constitutive relations satisfying the principles of non-equilibrium thermodynamics. Therefore, mass diffusion induced by a temperature gradient and heat conduction induced by a composition gradient can be implicitly, and unexpectedly, predicted even in the absence of coupling terms. This study presents a critical analysis of different formulations of the constitutive relations, with special focus on regular binary mixtures. It is shown that, among the different formulations presented, the one which adopts the chemical potential gradient at constant temperature as the driving force for mass diffusion allows for the implicit thermo-diffusion effect to be strictly absent while the resulting Dufour effect is negligibly small. Such a formulation must be preferred to the other ones since cross-coupling effects are predicted only if explicitly introduced via Onsager coupling coefficients.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3