Entropy and Entropy Production in Multiscale Dynamics

Author:

Grmela Miroslav1,Pavelka Michal2,Klika Václav3,Cao Bing-Yang4,Bendian Nie4

Affiliation:

1. École Polytechnique de Montréal , C.P. 6079 suc. Centre-ville , Montréal , , Québec , Canada

2. Mathematical Institute, Faculty of Mathematics and Physics , Charles University , Sokolovská 83 , Prague , Czech Republic

3. Department of Mathematics – FNSPE , Czech Technical University in Prague , Trojanova 13 , Prague , Czech Republic

4. Department of Engineering Mechanics , Tsinghua University , Beijing , China

Abstract

Abstract Heat conduction is investigated on three levels: equilibrium, Fourier, and Cattaneo. The Fourier level is either the point of departure for investigating the approach to equilibrium or the final stage in the investigation of the approach from the Cattaneo level. Both investigations bring to the Fourier level an entropy and a thermodynamics. In the absence of external and internal influences preventing the approach to equilibrium the entropy that arises in the latter investigation is the production of the classical entropy that arises in the former investigation. If the approach to equilibrium is prevented, then the entropy that arises in the investigation of the approach from the Cattaneo level to the Fourier level still brings to the Fourier level the entropy and the thermodynamics even if the classical entropy and the classical thermodynamics are absent. We also note that vanishing total entropy production as a characterization of equilibrium state is insufficient.

Funder

Natural Sciences and Engineering Research Council of Canada

Grantová Agentura České Republiky

Univerzita Karlova v Praze

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Chemistry

Reference34 articles.

1. I. E. Dzyaloshinskii and G. E. Volovick, Poisson brackets in condensed matter physics, Ann. Phys. 125 (1980), no. 1, 67–97.

2. M. Grmela, Particle and bracket formulations of kinetic equations, Contemp. Math. 28 (1984), 125–132.

3. A. N. Kaufman, Dissipative Hamiltonian systems: A unifying principle, Phys. Lett. A 100 (1984), no. 8, 419–422.

4. P. J. Morrison, Bracket formulation of irreversible classical fields, Phys. Lett. A 100 (1984), no. 8, 423–427.

5. M. Grmela, Bracket formulation of diffusion-convection equations, Physica, D: Nonlinear Phenom. 21 (1986), no. 2-3, 179–212.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3