Quantum algorithms for computing general discrete logarithms and orders with tradeoffs

Author:

Ekerå Martin1

Affiliation:

1. KTH Royal Institute of Technology , Stockholm , Sweden ; Swedish NCSA, Swedish Armed Forces , Stockholm , Sweden

Abstract

Abstract We generalize our earlier works on computing short discrete logarithms with tradeoffs, and bridge them with Seifert's work on computing orders with tradeoffs, and with Shor's groundbreaking works on computing orders and general discrete logarithms. In particular, we enable tradeoffs when computing general discrete logarithms. Compared to Shor's algorithm, this yields a reduction by up to a factor of two in the number of group operations evaluated quantumly in each run, at the expense of having to perform multiple runs. Unlike Shor's algorithm, our algorithm does not require the group order to be known. It simultaneously computes both the order and the logarithm. We analyze the probability distributions induced by our algorithm, and by Shor's and Seifert's order-finding algorithms, describe how these algorithms may be simulated when the solution is known, and estimate the number of runs required for a given minimum success probability when making different tradeoffs.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. |⟩: Towards a Translation Framework to Bridge the Classical-Quantum Programming Gap;Proceedings of the 1st ACM International Workshop on Quantum Software Engineering: The Next Evolution;2024-07-16

2. On the Success Probability of Quantum Order Finding;ACM Transactions on Quantum Computing;2024-05-20

3. Hybrid Approach to Public-Key Algorithms in the Near-Quantum Era;Lecture Notes in Computer Science;2024

4. Extending Regev’s Factoring Algorithm to Compute Discrete Logarithms;Lecture Notes in Computer Science;2024

5. Quantum Complexity for Discrete Logarithms and Related Problems;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3