Role of catalytic and non-catalytic subsite residues in ribonuclease activity of human eosinophil-derived neurotoxin

Author:

Sikriwal Deepa,Seth Divya,Batra Janendra K.

Abstract

AbstractHuman eosinophil-derived neurotoxin (EDN), a secretory protein from eosinophils, is a member of the RNase A superfamily. The ribonucleolytic activity of EDN is central to its biological activities. EDN binds RNA in a cationic cleft, and the interaction between EDN and RNA substrate extends beyond the scissile bond. Based on its homology with RNase A, putative substrate binding subsites have been identified in EDN. The B1and B2subsites interact specifically with bases, whereas P0, P1, and P2subsites interact with phosphoryl groups. In this study, we evaluated the role of putative residues of these subsites in the ribonucleolytic activity of EDN. We demonstrate that of the two base binding subsites, B1is critical for the catalytic activity of EDN, as the substrate cleavage was dramatically reduced upon substitution of B1subsite residues. Among the phosphate-binding subsites, P1is the most crucial as mutations of its constituting residues totally abolished the catalytic activity of EDN. Mutation of P0and P2subsite residues only affected the catalytic activity on the homopolymer Poly(U). Our study demonstrates that P1and B1subsites of EDN are critical for its catalytic activity and that the other phosphate-binding subsites are involved in the activity on long homopolymeric substrates.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3