MoRAine - A web server for fast computational transcription factor binding motif re-annotation

Author:

Baumbach Jan,Wittkop Tobias,Weile Jochen,Kohl Thomas,Rahmann Sven

Abstract

SummaryBackground: A precise experimental identification of transcription factor binding motifs (TFBMs), accurate to a single base pair, is time-consuming and difficult. For several databases, TFBM annotations are extracted from the literature and stored 5ʹ → 3ʹ relative to the target gene. Mixing the two possible orientations of a motif results in poor information content of subsequently computed position frequency matrices (PFMs) and sequence logos. Since these PFMs are used to predict further TFBMs, we address the question if the TFBMs underlying a PFM can be re-annotated automatically to improve both the information content of the PFM and subsequent classification performance.Results: We present MoRAine, an algorithm that re-annotates transcription factor binding motifs. Each motif with experimental evidence underlying a PFM is compared against each other such motif. The goal is to re-annotate TFBMs by possibly switching their strands and shifting them a few positions in order to maximize the information content of the resulting adjusted PFM. We present two heuristic strategies to perform this optimization and subsequently show that MoRAine significantly improves the corresponding sequence logos. Furthermore, we justify the method by evaluating specificity, sensitivity, true positive, and false positive rates of PFM-based TFBM predictions for E. coli using the original database motifs and the MoRAine-adjusted motifs. The classification performance is considerably increased if MoRAine is used as a preprocessing step.Conclusions: MoRAine is integrated into a publicly available web server and can be used online or downloaded as a stand-alone version from http://moraine.cebitec.uni-bielefeld.de.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Reference1 articles.

1. ttp cr ea tiv ec om m on or lic en se by - nd TRANSPATH and CYTOMER as starting points for an on - tology of regulatory networks In Silico Journal of Integrative http journal imbio de doi;Wingender;Biol Bioinformatics,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3